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Abstract

The MILAN project, a joint effort involving Arizona State University and New York University, has produced and validated
fundamental techniques for the realization of efficient, reliable, predictable virtual machines on top of metacomputing envi-
ronments that consist of an unreliable and dynamically changing set of machines. In addition to the techniques, the principal
outcomes of the project include three parallel programming systems—Calypso, Chime, and Charlotte—which enable appli-
cations developed for ideal, shared memory, parallel machines to execute on distributed platforms that are subject to failures,
slowdowns, and changing resource availability. The techniques were extensively tested and performance experiments showed
that for extensive classes of computations, the techniques provide a more effective computing environment than what existed
before, supporting Quality of Service (QoS) requirements. The lessons learned from the MILAN project are being used to
design Computing Communities, a metacomputing framework for general computations.
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1. Summary

The project developed techniques to allow the effective use of metacomputing environments for a wide class of applica-
tions, with the particular emphasis on parallel computations. The approach was to develop run-time middleware that builds an
efficient, predictable, reliable virtual machine model on top of unreliable and dynamically changing platforms. Such a virtual
machine model allows applications developed for idealized, reliable, homogeneous parallel machines to run unchanged on
unreliable, heterogeneous metacomputing environments. The approach for realizing the virtual machine took advantage of
two general characteristics of computation behavior: adaptivity and tunability. A computation is adaptive if it exhibits at least
one of these two properties: (1) it can statically (at start time) and/or dynamically (during the execution) ask for resources
satisfying certain characteristics and incorporate such resources when they are given to it, and (2) it can continue executing
even when some resources are taken away from it. A computation is tunable if it is able to trade off resource requirements
over its lifetime, compensating for a smaller allocation of resources in one stage with a larger allocation in another stage
and/or a change in the quality of output produced by the computation. The techniques developed leverage this flexibility in
execution and specification to provide reliability, load balancing, and predictability, and a foundation for a comprehensive
treatment of Quality of Service (QoS) requirements, and this even when the underlying set of machines is unreliable and
changing dynamically. The principal outcomes of the MILAN project are (1) a core set of fundamental resource management
techniques enabling construction of efficient, reliable, predictable virtual machines, (2) the realization of these techniques in
three programming systems, and (3) a2 QoS-aware resource management system, exploiting tunability of computations. The
techniques were extensively tested, and the experiments proved the viability of the approach.
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Figure 1. The MILAN middleware in context.

2. Introduction

MILAN (Metacomputing In Large Asynchronous Networks) was a joint project of Arizona State University and New York
University. The primary objective of the MILAN project was to provide middleware layers that would enable the efficient,
predictable execution of applications on an unreliable and dynamically changing set of machines. Such a middleware layer,
will in effect create a metacomputer, that is a reliable stable platform for the execution of applications.

Improvements in networking hardware, communication software, distributed shared memory techniques, programming
Janguages and their implementations have made it feasible to employ distributed collections of computers for executing a
wide range of paralle! applications. These “metacomputing environments,” built from commodity machine nodes and con-
nected using commodity interconnects, afford significant cost advantages in addition to their widespread availability (e.g., a
machine on every desktop in an organization). However, such environments also present unique challenges for constructing
metacomputers on them, because the component machines and networks may: (1) exhibit wide variations in performance
and capacity, (2) become unavailable either partially or completely because of their use for other (non-metacomputing re-
lated) tasks. These challenges force parallel applications running on metacomputers to deal with an unreliable, dynamically
changing set of machines and have thus, limited their use on all but the most decoupled of parallel computations.

As part of the MILAN project, fundamental techniques were developed, which would enable the effective use of metacom-
puting environments for a wide class of applications, originally concentrating on parallel ones. The key thrust of the project
was to develop run-time middleware that builds an efficient, predictable, reliable virtual machine model on top of unreliable
and dynamically changing platforms. Such a virtual machine model would enable applications developed for idealized, reli-
able, homogeneous parallel machines to run unchanged on unreliable, heterogeneous metacomputing environments. Figure ]
shows the MILAN middleware in context. Our approach for realizing the virtual machine took advantage of two general
characteristics of computation behavior: adaptivity and tunability, see [8].

Adaptivity refers to a flexibility in execution. Specifically, a computation is adaptive if it exhibits at least one of these
two properties: (1) it can statically (at start time) and/or dynamically (during the execution) ask for resources satisfying
certain characteristics and incorporate such resources when they are given to it, and (2) it can continue executing even
when some resources are taken away from it.

Tunability refers to a flexibility in specification. Specifically, a computation is tunable if it is able to trade off resource
requirements over its lifetime, compensating for a smaller allocation of resources in one stage with a larger allocation
in another stage and/or a change in the quality of output produced by the computation.

Our technigues leverage this flexibility in execution and specification to provide reliability, load balancing, and predictability,
and a foundation for a comprehensive treatment of Quality of Service (QoS) requirements, and this even when the underlying
set of machines is unreliable and changing dynamically.

The principal outcomes of the MILAN project are (1) a core set of fundamental resource management techniques [19, 2,
21, 8] enabling construction of efficient, reliable, predictable virtual machines; (2) the realization of these techniques in three
complete programming systems: Calypso [2], Chime [25), and Charlotte [5}; and (3) a QoS-aware resource management
system, exploiting tunability of computations [8]. Calypso extends C++ with parallel steps interleaved into a sequential
program. Each parallel step specifies the independent execution of multiple concurrent tasks or a family of such tasks.
Chime extends Calypso to provide nested parallel steps and inter-thread communication primitives (as expressed in the




shared memory parallel language, Compositional C++ [7]). Charlotte provides a Calypso-like programming system and
runtime environment for the Web. In addition to these systems, the MILAN project has also produced two general tools:
ResourceBroker [3] and Knitting Factory [4], which support resource discovery and integration in distributed and web-based
environments, respectively. Towards the end of the project, as part of the Computing Communities effort, we examined how
the experience gained from designing, implementing, and evaluating these systems can be extended to supporting general
applications on metacomputing environments.

The next parts of the report present our methods and techniques, results, and their discussion. It is organized as follows.
Section 3 overviews the fundamental techniques central to all of the MILAN project’s programming systems. Section 4
describes in detail the design, implementation, and performance of the various programming systems, general tools, and
resource management. Section 5 presents the rationale and preliminary design of Computing Communities, a metacomputing
framework for general computations.

3 Key Techniques

To execute parallel programs on networks of commodity machines, one frequently assumes a priori knowledge—at pro-
gram development—of the number, relative speeds, and the reliability of the machines involved in the computation. Using
this information, the program can then distribute its load evenly for efficient execution. This knowledge can not be assumed
for distributed multiuser environments, and hence, it is imperative that programs adapt to machine availability. That is, a
program running on a metacomputer must be able to integrate new machines into a running computation, mask and remove
failed machines, and balance the work load in such a way that slow machines do not dictate the progress of the computation.

The traditional solution to overcome this type of dynamically changing environment has been to write self-scheduling
parallel programs (also referred to as the master/slave [14], the manager/worker [16}, or the bag-of-tasks [6] programming
model). In self-scheduled programs, the computation is divided into a large number of small computational units, or tasks.
Participating machines pick up and execute a task, one at a time, until all tasks are done, enabling the computation to
progress at a rate proportional to available resources. However, self scheduling does not solve all the problems associated
with executing programs on distributed multiuser environments. First, self scheduling does not address machine and network
failures. Second, a very slow machine can slow down the progress of faster machines if it picks up a compute-intensive task.
Finally, self scheduling increases the number of tasks comprising a computation and, thereby, increases the effects of the
overhead associated with assigning tasks to machines. Depending on the network, this overhead may be large and, in many
cases, unpredictable.

The MILAN project extended the basic self-scheduling scheme in various ways to adequately address the above shortcom-
ings. These extensions are embodied in five techniques: eager scheduling, two-phase idempotent execution strategy (TIES),
dynamic granularity management, preemptive scheduling, and predictable scheduling for tunable computations. We describe
the principal ideas behind each of these techniques here, deferring a detailed discussion of their implementation and impact
on performance to Section 4.

3.1 Eager Scheduling

Eager scheduling extends self scheduling to deal with network and machine failures, as well as any disparity in machine
speeds. The key idea behind eager scheduling, initially proposed in [19], is that a single computation task can be concurrently
worked upon by multiple machines. Eager scheduling works in a manner similar to self scheduling at the beginning of
a parallel step, but once the number of remaining tasks goes below the number of available machines, eager scheduling
aggressively assigns and re-assigns tasks until all tasks have been executed to completion. Concurrent assignment of tasks to
multiple machines guarantees that slow machines, even very slow machines, do not slow down the computation. Furthermore,
by considering failure as a special case of a slow machine (an infinitely slow machine), even if machines crash or become less
accessible, for example due to network delays, the entire computation will finish as long as at least one machine is available
for a sufficiently long period of time. Thus, eager scheduling masks machine failures without the need to actually detect
failures.

3.2 Two-phase Idempotent Execution Strategy (TIES)

Multiple executions of a program fragment (which is possible under eager scheduling) can result in an incorrect program
state. TIES [19] ensures idempotent memory semantics in the presence of multiple executions. The computation of each
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parallel step is divided into two phases. In the first phase, modifications to the shared data region, that is the write-set of
tasks, are computed but kept aside in a buffer. The second phase begins when all tasks have executed to completion. Then, a
single write-set for each completed task is applied to the shared data, thus atomically updating the memory. Note that each
phase is idempotent, since its inputs and outputs are disjoint. Informally, in the first phase the input is shared data and the
output is the buffer, and in the second phase the input is the buffer and the output is shared memory.

3.3 Dynamic Granularity Management

The interplay of eager scheduling and TIES addresses fault masking and load balancing. Dynamic granularity manage-
ment, also called bunching, is used to amortize overheads and mask network latencies associated with the process of assigning
tasks to machines. Bunching extends self scheduling by assigning a set of tasks (a bunch) as “a single assignment.” Bunching
has three benefits. First, it reduces the number of task assignments, and hence, the associated overhead. Second, it overlaps
computation with communication by allowing machines to execute the next task (of a bunch) while the results of the previous
task are being sent back on the network. Finally, bunching allows the programmer to write fine-grained parallel programs
that are automatically and transparently executed in a coarse-grained manner.

We have implemented factoring [17], an algorithm that computes the bunch size based on the number of remaining tasks
and the number of currently available machines.

3.4 Preemptive Scheduling

Eager scheduling provides load balancing and fault isolation in a dynamic environment. However, our description so far
has considered only non-preemptive tasks which run to completion once assigned to a worker. Non-preemptive scheduling
has the disadvantage of delivering sub-optimal performance when there is a mismatch between the set of tasks and the set of
machines. Examples of situations include those when the number of tasks is not divisible by the number of machines, when
the tasks are of unequal lengths, and when the number of tasks is not static (i.e., new tasks are created and/or terminated
on the fly). To address inefficiencies resulting from these situations, the MILAN project complemented eager scheduling
with preemptive scheduling techniques. Our results, discussed in Section 4, show that despite preemption overheads, use of
preemptive scheduling on distributed platforms can improve execution time of parallel programs by reducing the number of
tasks that need to be repeatedly executed by eager scheduling [21].

We have developed a family of preemptive algorithms, of which we mention three here. The Optimal Algorithm is
targeted for situations where the number of tasks to be executed is slightly larger than the number of machines available. This
algorithm precomputes a schedule that minimizes the execution time and the number of context switches nceded. However
it requires that the task execution time be known in advance and therefore is not always practical. The Distributed, Fault-
tolerant Round Robin Algorithm is suited for a set of n tasks scheduled on m machines, where n > m. Initially, the first m
tasks are assigned to the m machines. Then, after a specified time quantum, all the tasks are preempted and the next m tasks
are assigned. This continues in a circular fashion until all tasks are completed. The Preemptive Task Bunching Algorithm is
applicable over a wider range of circumstances. All n tasks are bunched into m bunches and assigned to the m machines.
When a machine finishes its assigned bunch, all the tasks on all the other machines are pre-empted and all the remaining tasks
are collected, re-bunched (into m sets), and assigned again. This algorithm works well for both large-grained and fine-grained
tasks even when machine speeds and task lengths vary.

3.5 Predictable Scheduling

While the techniques described earlier enable the building of an efficient, fault-tolerant virtual machine on top of an
unreliable and dynamically changing set of machines, they alone are unable to address the predictability requirements of
applications such as image recognition, virtual reality, and media processing that are increasingly running on metacomput-
ers. One of the key challenges deals with providing sufficient resources to computations to enable them to meet their time
deadlines in the face of changing resource availability.

Our technique [8] relies upon an explicit specification of application tunability, which refers to an application’s ability
to absorb and relinquish resources during its lifetime, possibly trading off resource requirements versus quality of its out-
put. Tunability provides the freedom of choosing amongst multiple execution paths, each with their own resource allocation
profile. Given such a specification and short-term knowledge about the availability of resources, the MILAN resource man-
ager chooses an appropriate execution path in the computation that would allow the computation to meet its predictability
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requirements. In general, the resource manager will need to renegotiate both the level of resource allocation and the choice
of execution path in response to changes in resource characteristics. Thus, application tunability increases its likelihood of
achieving predictable behavior in a dynamic environment.

4. Programming Systems and Resource Management
4.1 Calypso

Commercial realities dictate that parallel computations typically will not be given a dedicated set of identical machines.
Non-dedicated computing platforms suffer from non-uniform processing speeds, unpredictable behavior, and transient avail-
ability. These characteristics result from external factors that exist in “real” networks of machines. Unfortunately, load
balancing, fault masking, and adaptive execution of programs on a set of dynamically changing machines are neglected by
most programming systems. The neglect of these issues has complicated the already difficult job of developing parallel
programs.

Calypso [2] is a parallel programming system and a runtime system designed for adaptive parallel computing on networks
of machines. The work on Calypso has resulted in several original contributions which are summarized below.

Calypso separates the programming model from the execution environment: programs are written for a reliable virtual
shared-memory computer with unbounded number of processors, i.e., a metacomputer, but execute on a network of dynami-
cally changing machines. This presents the programmer with the illusion of a reliable machine for program development and
verification. Furthermore, the separation allows programs to be parallelized based on the inherent properties of the problem
they solve, rather than the execution environment.

Programs without any modifications can execute on a single machine, a multiprocessor, or a network of unreliable ma-
chines. The Calypso runtime system is able to adapt executing programs to use available resources—computations can
dynamically scale up or down as machines become available, or unavailable. It uses TIES and allows parts of a computation
executing on remote machines to fail, and possibly recover, at any point without affecting the correctness of the computation.
Unlike other fault-tolerant systems, there is no significant additional overhead associated with this feature.

Calypso automatically distributes the work-load depending on the dynamics of participating machines, using eager
scheduling and bunching. The result is that fine-grain computations are efficiently executed in coarse-grain fashion, and
faster machines perform more of the computation than slower machines. Not only is there no cost associated with this fea-
ture, but it actually speeds up the computation, because fast machines are never blocked while waiting for slower machines
to finish their work assignments—they bypass the slower machines. As a consequence, the use of slow machines will never
be detrimental to the performance of a parallel program.

4.1.1 Calypso Programs

A Calypso program basically consists of the standard C++ programming language, augmented by four additional keywords
to express parallelism. Parallelism is obtained by embedding parallel steps within sequential programs. Parallel steps consist
of one or more task (referred to as jobs in the Calypso context), which (logically) execute in parallel and are generally
responsible for computationally intensive segments of the program. The sequential parts of programs are referred to as
sequential steps and they generally perform initialization, input/output, user interactions, etc.

Figure 2 illustrates the execution of a program with two parallel steps and three sequential steps. It is important to note
that parallel programs are written for a virtual shared-memory parallel machine irrespective of the number of machines that
participate in a given execution.

This programming model is sometimes referred to as a block-structured parbegin/parend or fork/join model [11, 23].
Unlike other programming models where programs are decomposed (into several files or functions) for parallel execution,
this model together with shared memory semantics, allows loop-level parallelization. As a result, given a working sequential
program it is fairly straightforward to parallelize individual independent loops in an incremental fashion—if the semantics
allows this.

Shared-memory semantics is only provided for shared variables, i.e., variables that are tagged with the shared keyword.
A parallel step starts with the keyword parbegin and ends with the keyword parend. Within a parallel step, multiple
parallel jobs may be defined using the keyword rout ine. Completion of a parallel step consists of completion of all its jobs
in an indeterminate order. )
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Figure 2. An execution of a program with two parallel steps and three sequential steps; the first
parallel step consists of 9 jobs, the second parallel step consists of 6 jobs.

4.1.2 Execution Overview

A typical execution of a Calypso program consists of a central process, called the manager, and one or more additional
processes, called workers. These processes can reside on a single machine or they can be distributed on a network. In
particular, when a user starts a Calypso program, in reality, she is starting a manager. The Manager immediately fork a child
process that executes as a worker.

The manager is responsible for the management of the computation as well as the execution of sequential steps. Calypso,
as implemented, only allows one manager, and therefore it does not tolerate the failure of this process. The computation
of parallel jobs is left to the workers. In general, the number of workers and the resources they can devote to parallel
computations can dynamically change in a completely arbitrary manner, and the program adapts to the available machines.
In fact, the arbitrary slowdown of workers due to other executing programs on the same machine, failures due to process and
machine crashes, and network inaccessibility due to network partitions are tolerated. Furthermore, workers can be added at
any time to speed up an already executing system and to increase fault tolerance. Arbitrary slowdown of the manager is also
tolerated: this would, of course, slow down the overall execution.

4.1.3 Manager Process
The manager is responsible for executing the non-parallel step of a computation as well as providing workers with scheduling

and memory services.

Scheduling Service: Jobs are assigned to workers based on a self-scheduling policy. Moreover, the manager has the option
of assigning a job repeatedly until it is executed to completion by at least one worker—this is eager scheduling, and provides
the following benefits:

e As long as at least one worker does not fail continually, all jobs will be completed, if necessary, by this one worker.

e jobs assigned to workers that later failed are automatically reassigned to other workers; thus crash and network failures
are tolerated.




e Because workers on fast machines can re-execute jobs that were assigned to slow machines, they can bypass a slow
worker to avoid delaying the progress of the program.

In addition to eager scheduling, Calypso’s scheduling service implements several other scheduling techniques for im-
proved performance. Bunching masks network latencies associated with the process of assigning jobs to workers. It is
implemented by sending the worker a range of job identifiers (/ds) in each assignment. The overhead associated with this
implementation is one extra integer value per job assignment message, which is negligible.

Memory Service: Since multiple executions of jobs caused by eager scheduling may lead to an inconsistent memory state,
the manager implements TIES as follows. Before each parallel step, a manager creates a twin copy of the shared pages and
unprotects the shared region. The memory management service then waits until a worker either requests a page or reports the
completion of a job. The manager uses the twin copy of the shared pages to service worker page requests. The message that
workers send to the manager to report the completion of a job also contains the modifications that resulted from executing the
job. Specifically, workers logically bit-wise XORs the modified shared pages before and after executing the job, and send the
results, or more precisely the differences between the new values and the old ones (diffs) to the manager. When a manager
receives such a message, it first checks whether the job has been completed by another worker. If so, the diffs are discarded,
otherwise, the diffs are applied (by an XOR operation) to manager’s memory space. Notice that the twin copies of the shared
pages, which are used to service worker page requests, are not modified. The memory management of a parallel step halts
once all the jobs have run to completion, and the program execution then continues with the next sequential step.

4.1.4 Worker Process

A worker repeatedly contacts the manager for jobs to execute. The manager sends the worker an assignment (a bunch of
jobs) specified by the following parameters: the address of the function, the number of instances of the job, and a range of
job Ids. After receiving a work assignment, a worker first access-protects the shared pages, and then calls the function that
represents an assigned job. The worker handles page-faults by fetching the appropriate page from the manager, installing
process’ address space, and unprotecting the page so that subsequent accesses to the same page will proceed undisturbed.
Once the execution of the function (i.e. the job) completes, the worker identifies all the modified shared pages and sends the
diffs to the manager and starts executing the next job in the assignment. Notice that bunching overlaps computation with
communication by allowing a worker to execute the next job while the diffs are on the network heading to the manager.
Additional optimizations have been implemented, including the following:

Caching: For each shared page, the manager keeps track of the logical step-number in which the page was last modified.
This vector is piggybacked on a job assignment the first time a worker is assigned a job in a new parallel step. Hence, the
associated network overhead is negligible. Workers can use this vector on page-faults to locally determine whether the cached
copy of the page is still valid. Thus, shared pages that have been paged-in by workers are kept valid as long as possible without
a need for an invalidation protocol. Modified shared pages are re-fetched only when necessary. Furthermore, read-only shared
pages are fetched by a worker at most once and write-only shared pages are never fetched. As a result, the programmer does
not declare the type of coherence or caching technique to use, rather, the system dynamically adapts. Invalidation requests
are piggybacked on work assignment messages and bear very little additional cost.

Prefetching: Prefetching refers to obtaining a portion of the data before it is needed, in the hope that it will be required
sometime in the future. Prefetching has been used in a variety of systems with positive results. A Calypso worker implements
prefetching by monitoring its own data access patterns and page-faults, and it tries to predict future data access based on past
history. The predictions are then used to pre-request shared pages from the manager. Depending on the regularity of a
program’s data access patterns, prefetching has shown positive results.

4.1.5 Performance Experiments

The experiments were conducted on up to 17 identical 200 MHz PentiumPro machines running the Linux version 2.0.34
operating system, and connected by a 100Mbps Ethernet through a non-switched hub. The network was isolated to eliminate
outside effects.
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Figure 3. Parallel ray tracing with different number of parallel tasks.

A publicly available sequential ray tracing program [9] was used as the starting point to implement parallel versions in
Calypso and PVM [14]. The sequential program, which traced a 512 x 512 image in 53 s, is used for calculating the parallel
efficiencies.

The PVM implementation used explicit master/slave programming style for load balancing, where as for Calypso, load
balancing was provided transparently by the run-time system. To demonstrate the effects of adaptivity, the PVM and Calypso
programs were parallelized using different number of tasks and executed from 1 to 16 machines. The performance results
are illustrated in Figure 3. As the results indicate, the PVM program is very sensitive to the number and the computation
requirement of the parallel tasks, and at most, a hand-tuned PVM program outperforms a Calypso program by 4%. Notice
that independent of the number of machines used, the interplay of bunching, eager scheduling, and TIES allows the Calypso
program to achieves its peak performance using 512 tasks—fine grain tasks: as the result of bunching, fine-grain tasks, in
effect, execute in coarse-grain fashion; the combination of eager scheduling and TIES compensates any over-bunching that
may occur.




4.2 Chime

Chime is a parallel processing system that retains the salient features of Calypso, but supports a far richer set of program-
ming features. The internals of Chime are significantly different from Calypso, and it runs on the Windows NT operating
system [25). Chime is the first system that provides a true general shared memory multiprocessor environment on a network
of machines. It achieves this by implementing the CC++ [7] language (shared memory part) on a distributed system. Thus in
addition to the Calypso features of fault-tolerance and load balancing Chime provides:

o True multi-processor shared-memory semantics on a network of machines.
e Block structured scoping of variables and non-isolated distributed parallel execution.
o Support for nested parallelism.

¢ Inter-task synchronization.

4.2.1 Chime Architecture

A program written in CC+ is preprocessed to convert it to C++ and compiled and linked with the Chime library. Then the
executable is run, using the manager-worker scheme of Calypso.

The manager process consists of two threads, the application thread and the control thread. The application thread
executes the code programmed by the programmer. The control thread executes, exclusively, the code provided by the
Chime library. Hence, the application thread runs the program and the control thread runs the management routines, such as
scheduling, memory service, stack management, and synchronization handling.

The worker process also consists of two threads, the application thread and the control thread. The application threads
in the worker and manager are identical. However, the control thread in the worker is the client of the control thread in
the manager. It requests work from the manager, retrieves data pages from the manager and flushes updated memory to the
manager at the end of the task execution.

4.2.2 Chime and CC++

As mentioned earlier, Chime provides a programming interface that is based on the Compositional C++ (CC++) [7] language
definition. CC++ provides language constructs for shared memory, nested parallelism and synchronization. All threads of
the parallel computation share all global variables. Variables declared local to a function are private to the thread running the
function, but if this thread creates more threads inside the function, then all the children share the local variables.

CC++ uses the par and parfor statements to express parallelism. Par and parfor statements can be nested. CC++ uses
single assignment variables for synchronization. A single assignment variable is assigned a value by any thread called the
writing thread. Any other thread, called the reading thread can read the written value. The constraint is that the writing thread
has to assign before the reading thread reads, else the reading thread is blocked until the writing thread assigns the variable.

These language constructs provide significant challenges to a distributed (DSM-based) implementation that is also fault
tolerant. We achieved the implementation by using a pre-processor to detect the shared variables and parallel constructs,
providing stack-sharing support—called distributed cactus stacks—to implement parent-child variable sharing and innovative
scheduling techniques, coupled with appropriate memory flushing to provide synchronization [26].

4.2.3 Preprocessing CC++
Consider the following parallel statement:

parfor ( int i=0; 1<100; i++) {
afil = 0;
}i

This creates 100 tasks, each task assigning one element of the array a. The preprocessor converts the above statement to
something along the following lines:
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Figure 4. A DAG for a nested paraliel step.

1. for (int i=0; i<100;i++) {
2. add task entry and &i
in the scheduling table;
}
3. SaveContext of this thread;
4. if worker {
alil = 0;
5. terminate task;
6. else {
7. suspend this thread and

request manager to
schedule threads till
all tasks completed;

}

The above code may execute in the manager (top level parallelism) or the worker (nested parallelism). Assume the above
code executes in the manager. Then the application thread of the manager executes the code. Lines 1 and 2 create 100 entries
in the scheduling table, one per parallel task. Then line 3 saves the context of the parent task, including the parent stack.
Then the parent moves to line 7 and this causes the application thread to transfer control to the control thread.

The control thread now waits for task assignment requests from the control threads of workers. When a worker requests a
task, the manager control thread sends the stored context and the index value of ¢ for a particular task to the worker.

The control thread in the worker installs the received context and the stack on the application thread in the worker and
resumes the application thread. This thread now starts executing at line 4. Note that now the worker is executing at line 4,
and hence does one iteration of the loop and terminates. Upon termination, the worker control thread regains control, flushes
the updated memory to the manager and asks the manger for a new assignment.

4.24 Scheduling

The controlling thread at the manager is also responsible for task assignment, or scheduling. The manager uses a scheduling
algorithm that takes care of task allocation to the workers as well as scheduling of nested parallel tasks in correct order.
Nested parallel tasks in an application form a DAG as shown in Figure 4.

Each nested parallel step consists of several sibling parallel tasks. It also has a parent task and a continuation that must
be executed, once the nested parallel step has been completed. A continuation is an object that fully describes a future
computation. To complicate the scenario, a continuation may itself have nested parallel step(s).

The manager maintains an execution dependency graph to capture the dependencies between the parallel tasks and sched-
ules them and their corresponding continuations in correct order. Eager scheduling is used to allocate tasks to the workers.
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Figure 5. Graphical representation of a cactus stack.

4.2.5 Cactus Stacks

The cactus stacks are used to handle sharing of local variables (see Figure 5). For top level nesting, the manager process is
suspended at a point in execution where its stack and context should be inherited by all the children threads. When a worker
starts, it is sent the contents of the manager’s stack along with the context. The controlling thread of the worker process then
installs this context as well as the stack, and starts the application thread.

However, if a worker executes a nested parallel step, the same code as the above case is used, but the runtime system
behaves slightly differently. The worker, after generating the nested parallel jobs, invokes a routine that adds the jobs and the
continuation of the parent job to the manager’s job table, remotely. The worker suspends and the controlling thread in the
worker, sends the worker’s complete context, including the newly grown stack, to the manager.

The stack for a nested parallel task, therefore, is constructed by writing the stack segments of its ancestors onto the stack
of a worker’s application thread. Upon completion, the local portion of the stack for a nested parallel task is unwound leaving
only those portions that represent its ancestors. This portion of the stack is then XOR’ed with its unmodified shadow and the
result is returned to the manager.

4.2.6 Performance Experiments

Many performance tests have been done on Chime [25], evaluating its capabilities in speedups, load balancing, and fault
tolerance. The results are competitive to other systems, including Calypso. We present three micro-tests that show the
performance of the nested parallelism (including cactus stacks), the Chime synchronization mechanisms, and preemptive
scheduling mechanisms.

For the nested parallelism overhead, we ran a program that recursively creates two child threads until 1024 leaf threads
have been created. Each leaf thread assigns one integer in a shared array and then terminates. Figure 6 shows that the total
runtime of the program asymptotically saturates as number of machines are increased, due to the bottleneck in stack and
thread management at the manager. The time taken to handle all overhead for a thread (including cactus stacks) is 74 ms.

To measure the synchronization overhead, we use 512 single assignment variables, assign them from 512 threads and
read them from 512 other threads. As can be seen in Figure 7, the synchronization overhead is about 86 ms per occurrence,
showing that synchronization does not add too much overhead over basic thread creation.

To measure the impact of preemptive scheduling algorithms for programs with different grain sizes, we decomposed a
matrix-multiply algorithm on two 1500 x 1500 matrices into 5 tasks (very coarse grain), 10 tasks (coarse grain), 21 tasks
(medium grain), and 1500 tasks (fine grain). All experiments used three identical machines. Given the equal task lengths,
our experiments were biased against preemptive schedulers. As shown in Figure 8, on the overall, preemptive scheduling
has definite advantages over non-preemptive scheduling, not withstanding its additional overheads. Specifically, for coarse-
grained and very coarse-grained tasks, round robin scheduling effectively complements eager scheduling in reducing overall
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execution time. For most other task sizes, the preemptive task bunching algorithm yields the best performance: for fine-
grained tasks it minimizes the number of pre-emptions that are necessary.

4.3 Charlotte

Many of the assumptions made for (local-area) networks of machines are not valid for the Web. For example, the machines
on the Web do not have a common shared file system, no single individual has access-rights (user-account) on every machine,
and the machines are not homogeneous. Another important distinction is the concept of users. A user who wants to execute
a program on a network of machines, typically performs the steps: logs onto a machine under her control (i.e. the local
machine), from the local machine logs onto other machines on the network (i.e. remote machines) and initializes the execution
environment, and then starts the program. In the case of the Web, no user can possibly hope to have the ability to log
onto remote machines. Thus, another set of users who control remote machines, or software agents acting on their behalf,
must voluntarily allow others access. To distinguish the two types of users, this section uses the term end-users to refer to
individuals who start the execution (on their local machines) and await results, and volunteers to refer to individuals who
voluntarily run parts of end-users’ programs on their machines (remote to end-users). Similarly, volunteer machines is used
to refer to machines owned by volunteers.

Simplicity and security are important objectives for volunteers. Unless the process of volunteering a machine is simple—
for example as simple as a single mouse-click—and the process of withdrawing a machine is simple, it is likely that many
would-be volunteer machines will be left idle. Furthermore, volunteers need assurance that the integrity of their machine and
file system will not be compromised by allowing “strangers” to execute computations on their machines. Without such an
assurance, it is natural to assume security concerns will outweigh the charitable willingness of volunteering.

Charlotte [5] is the first parallel programming system to provide one-click computing. Tts preliminary version was very
favorably mentioned in a Scientific American article devoted to metacomputing [15]. Quoting that article: “Perhaps the
most promising experiment to date is Charlotte, built at New York University.” The idea behind one click computing is to
allow volunteers from anywhere on the Web, and without any administrative effort, to participate in ongoing computations
by simply directing a standard Java-capable browser to a Web site. A key ingredient in one-click computing is its lack
of requirements: user-accounts are not required, the availability of the program on a volunteer's machine is not assumed,
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Figure 8. Performance of Preemptive Scheduling.

and system-administration is not required. Charlotte builds on the capability of the growing number of Web browsers to
seamlessly load Java applets from remote sites, and the applet security model, which enables Web browsers to execute
untrusted applets in a controlled environment, to provide a comprehensive programming system.

4.3.1 Charlotte Programs

A Charlotte program is written by inserting any number of parallel steps onto a sequential Java program. A parallel step is
composed of one or more routines, which are (sequential) threads of control capable of executing on remote machines.

A parallel step starts and ends with the invocation of parBegin () and parEnd () methods, respectively. A routine
is written by subclassing the Droutine class and overriding its drun () method. Routines are specified by invoking
the addRoutine () method with two arguments: a routine object and an integer, n, representing the number of routine
instances to execute. To execute a routine, the Charlotte runtime system invokes the drun () method of routine objects, and
passes as arguments the number of routine instances created (i.e. ») and an identifier in the range (0, ..., n] representing the
current instance.

A program’s data is logically partitioned into private and shared segments. Private data is local to a routine and is not
visible to other routines; shared data, which consists of shared class-type objects, is distributed and is visible to all routines.
For every basic data-type defined in Java, Charlotte implements a corresponding distributed shared class-type. For example,
Java provides int and float data-types, whereas Charlotte provides Dint and Dfloat classes. The class-types are
implemented as standard Java classes, and are read and written by invoking get () and set () method calls, respectively.
The runtime system maintains the coherence of shared data.

4.3.2 Implementation

Worker Process: A Charlotte worker process is implemented by the Cdaemon class which can run either as a Java appli-
cation or as a Java applet. At instantiation, a Cdaemon object establishes a TCP/IP connection to the manager and maintains
this connection throughout the computation.

Two implementation features are worth noting. First, since Cdaemon is implemented as an applet (as well as an appli-
cation), the code does not need to be present on volunteer machines before the computation starts. By simply embedding
the Cdaemon applet in an HTML page, browsers can download and execute the worker code. Second, the Cdaemon class,
unlike its counterpart the Calypso worker, is independent of the Charlotte program it executes. Thus, not only are Charlotte
workers able to execute parallel routines of any Charlotte program, but only the necessary code segments are transfered to
volunteer machines.

Manager Process: A manager process begins with the main () method of a program and executes the non-parallel steps in
a sequential fashion. It also manages the progress of parallel steps by providing scheduling and memory services to workers.
They are based on eager scheduling, bunching, and TIES.

Distributed Shared Class Types: Charlotte’s distributed shared memory is implemented in pure Java at the data-type level;
that is, through Java classes as stated above. For each primitive Java type like int and £1loat, there is a corresponding
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Charlotte class-type Dint and Dfloat. The member variables of these classes are a value field of the corresponding
primitive type, and a state flag that can be not_valid, readable, or dirty. It is important to note that different
parts of the shared data can be updated by different worker processes without false sharing, as long as the CRCW-Common
condition is met. (That is, several workers in a step can update the same data element, as long as all of them write the same
value.) The shared memory is always logically coherent, independently of the order in which routines are executed.

4.3.3 Performance Experiments

The experiments were conducted in the same execution environment as in Section 4.1.5. Programs were compiled (with
compiler optimization turned on) and executed in the Java Virtual Machine (JVM) packaged with Linux JDK 1.1.5 v7.
TYA version 0.07 [20] provided just-in-time compilation.

A publicly available sequential ray tracing program [22] was used as the starting point to implement parallel versions in
Charlotte, Java RMI [12], and JPVM [13]. Java RMI is an integral part of Java 1.1 standard and, therefore, it is a natural
choice for comparison. JPVM is a Java implementation of PVM, one of the most widely used parallel programming systems.
For the experiments, a 500 x 500 image was traced. The sequential program took 154 s to complete, and this number is used
as the base in calculating the speedups.

The first series of experiments compares the performance of the three parallel implementations of ray tracer, see Figure 9.
In the case of Charlotte, the same program with the same runtime arguments was used for every run—the program tuned
itself to the execution environment. For RMI and JPVM programs, on the other hand, executions with different grain sizes
were timed and the best results are reported—the programs were hand-tuned for the execution environment. The results
indicate that when using 16 volunteers, the Charlotte implementation runs within 5% and 10% of hand-tuned JPVM and
RMI implementations, respectively. It is encouraging to see that the performance of Charlotte is competitive with other
systems that do not provide load balancing and fault masking.

The final set of experiments illustrates the efficiency of the programs when executing on machines of varying speeds—a
common scenario when executing programs on the Web. Exactly the same programs with the same granularity sizes as the
previous experiment wererunonn, 1 < n < 4, groups of volunteers, where each group consisted of four machines: one
normal machine, one machine slowed down by 25%, one machine slowed down by 50%, and one machine slowed down
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by 75%. Each group has a computing potential of 2.5 volunteer machines. The results are depicted in Figure 10. As the
results indicate, the Charlotte program is the only one able to maintain its efficiency—the efficiency of the Charlotte program

degraded by approximately 5%. In contrast, the efficiency of RMI and PVM programs dropped by as much as 60% and 45%,
respectively.

4.4 Basic Resource Management

Research in MILAN looked for mechanisms for the best allocation of resources to satisfy QoS requirements. System
resources in the MILAN system are allocated to computations using a two-level strategy. At the first level, an application
conveys its requirements at start time to the ResourceBroker, which monitors system-wide resource availability and partitions
the resources among multiple competing computations by dynamically growing and shrinking the resource set for each
application. The ResourceBroker allocates resources both to computations that require a fixed amount of resources over their
lifetime (e.g., a typical PVM or MPI program), and to those that are capable of adapting to changing resource availability
(e.g., Calypso programs).

The second level of the resource management strategy consists of an application manager (one per application) that
partitions the resource set among the individual tasks of the computation. For example, the application manager for Calypso
programs is responsible for dispatching the parallel tasks to the processors in the resource set. It is able to utilize a number
of machines that is fewer than, equal to, or more than the number of parallel tasks of the step. When the number of tasks
exceeds the size of the resource set, the application manager automatically bunches tasks and assigns them to one machine
as a group, effectively converting a fine-grained expression of parallelism into a coarse-grained form at run time.

4.5 QoS-Aware Resource Management

The basic resource management is not able to address the predictability requirements of applications such as image recog-
nition, virtual reality, and media processing that are increasingly running on metacomputers. To support the needs of such
applications we have developed a technique [8], which relies on an explicit specification of application tunability.

Application tunability is a characteristic of several parallel and distributed computations. The key attribute unifying
all tunable computations is the availability of alternate application configurations, each corresponding to a different path
of execution. Each such execution path corresponds to a different resource utilization profile. A resource management
architecture, which is aware of the multiple configurations, can exploit the differences among their resource utilization profiles
to select a configuration and thereby a profile that best matches the characteristics of available system resources.

The differences in the resource utilization profiles of the alternate configurations can be characterized as tradeoffs along
three dimensions: (i) time, (ii) resource types, and (iii) output quality.

Trading off resource requirements over the time dimension implies that a large allocation of resources in one stage of
the computation’s lifetime can compensate for a smaller allocation in another stage, or vice versa. For example, the artifact
recognition application discussed earlier may first sample different portions of the image to decide on interesting regions, and
then run a resource-intensive algorithm on these regions; spending more resources on the sampling step reduces the work
that will need to be performed in the analysis step.

Trading off resource requirements over resource types implies that a large allocation of a particular type of resource can
compensate for a small allocation of another type of resource, either in the same or a different stage of the computation’s
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lifetime. For example, a multimedia data transmission application may send data either in compressed format or in its original
form. Choosing a compressed format would save network bandwidth at the expense of more computational power required
because of on-the-fly compression and decompression. The application can thus trade off computational resources versus
network resources by deciding whether or not to compress the data before injecting it into the network.

Trading off resource requirements over output quality implies that the application can compensate for a reduced resource
allocation by varying the quality of its output, while still operating in an acceptable range. For example, in several scientific
computations where approximate results are computed, an execution of a mandatory amount of time can produce an accept-
able result. Investing additional compute resources beyond that point will improve the accuracy of the result. The application
can thus utilize such tunability to optimize output quality levels given available resources.

Along these three dimensions, application tunability provides flexibility to the underlying resource management system,
which can now use the choice in resource allocation profiles to increase the number of applications that can be admitted into
the system, while still ensuring that an application meets its predictability requirements. For more details, see [8].

Next, we present an example of a tunable application.

The junction detection 18] application detects distinguished sets of pixels in an image where the intensity or color changes
abruptly. Junction detection is a core component of several image-processing applications, often serving as a precursor to
shape construction and classification tasks. Our junction detection computation consists of three steps. The first step samples
a subset of the pixels in parallel and performs a quick test to determine whether or not the tested pixel is of interest. A pixel
is of interest if the difference among intensities/colors of its neighbor pixels is beyond a threshold. The second step draws a
region of interest around a cluster of interesting pixels. The region is essentially a convex hull containing at least a certain
number of interesting pixels in close proximity. Finally, the third step runs a compute-intensive algorithm for every pixel in
the regions of interest.

Junction detection is a tunable application in that the granularity of sampling in the first step can be parameterized, resulting
in different resource requirements. For this application, processors are the primary resource of interest. The computation can
compensate (with respect to result quality) for a coarser sampling in the first task by possibly drawing additional and/or
larger regions of interest. Thus, a smaller allocation of processors in the first step (for coarser sampling) is compensated for
by requiring a larger allocation in the third step. Figure 12 demonstrates this tunability, showing two configurations with
different sampling granularities, different thresholds for drawing the regions of interest, and consequently different resource
requirements for the third step. Tunability is represented in terms of two parameters: the sampling granularity that affects the
number of pixels sampled in the first step, and a search distance metric that determines how regions of interest are constructed
in the second step of the algorithm. The resource requirements, deadlines, and output qualities associated with each alternate
execution path are assumed to be available a priori (these can be obtained by profiling on a training set of representative
images).

4.5.1 Resource Management Architecture

Exploiting application tunability requires changes to the way in which system resources are managed. At job start-up time,
and optionally during execution, the resource management system must be able to influence which configuration of the
tunable application is used for execution. The configuration must be chosen keeping in mind the variance in input data,
user preferences, and available resources. To achieve these goals, the extended MILAN resource management architecture,
shown in Figure 13, consists of two major components: an application-level QoS agent and the system-level QoS arbitrator.
The component names signify our focus on providing predictable quality of service (QoS) for applications. The QoS agent
communicates the application resource and predictability requirements to the QoS Arbitrator, which satisfies this request
(and those from other applications) by providing an appropriate resource allocation. We discuss these components in detail
below.

The QoS agent, automatically generated from the application’s specification by a preprocessing step (see [8] for details),
describes the application’s real-time constraints, its resource requirements, its output quality, and more importantly its tun-
ability. Tunability represents choices in the execution paths available for the application. As Figure 13 shows, from the
perspective of the QoS agent, the application is viewed as a collection of alternate execution paths (a chain, or more gen-
erally, a DAG) comprising several tasks, each with their own resource requirements and deadlines. Resource requirements
can be thought of as a vector of values, one for each resource in the system. Each task also has an associated output quality,
closely related to the requested resources. The quality value of the execution path is obtained by composing the output qual-
ities of each of the tasks. Tunability is expressed by specifying multiple such execution paths, each with its own resource
requirement and deadline profiles, representing alternate ways in which the application can consume resources in order to
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Configuration 1 Configuration 2

Step 1
SampleGranularity: 1:16 SampleGranularity: 1:64
Processors = 4, time = 8s Processors = 4, time = 2s
Step 2
SearchDistance: 24 pixels SearchDistance: 40 pixels
Processors = 2, time = 25 Processors = 4, time = 2s
Step 3

Processors = 4, time = 76s Processors = 6, time = 54s

Figure 12. Junction detection—a tunable parallel application.
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Figure 13. The MILAN QoS arbitration architecture permits application tunability to be exploited to
improve overall system utilization.

Request Allocation

produce outputs with the desired quality.

The QoS agent acts on behalf of the application to negotiate with the QoS arbitrator an appropriate level of resource
reservation/allocation for each task, maximizing the application output quality. In general, this negotiation involves an initial
allocation that gets revised as a function of changing application demands and/or changing system conditions. For the results
reported in the rest of the report however, we restrict our attention to a relatively static negotiation model: the QoS agent
communicates all the possible application execution paths and their resource requirements up front, and receives in return
(from the QoS arbitrator) a resource allocation profile for one of these paths.

The QoS arbitrator takes advantage of the flexible program specification provided by QoS agents to enhance system
utilization while satisfying the predictability requirements of each application. In MILAN, this flexibility comes from two
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Figure 14. Software architecture for Computing Communities.

aspects. First, application tunability provides the freedom to choose a resource allocation over time for each application. And
second, the adaptiveness of the underlying fault-masking techniques (two-phase idempotent execution and eager scheduling)
provide micro-level flexibility, permitting preemptive allocation, deallocation, and reallocation of resources to each parallel
step of the application. In this report, we restrict our focus to the flexibility obtained from application tunability.

Upon job arrival, the QoS arbitrator first performs admission control to check whether or not application resource require-
ments can be satisfied. Application tunability increases the likelihood that an application can be admitted into the system. The
QoS arbitrator scheduling algorithms (see [8]) first choose the best execution path, and then make an assignment of which
processors will execute which application tasks and for what time. These decisions are communicated back to the application
QoS agent which configures the application appropriately. In general, the QoS arbitrator also monitors system resources, and
triggers renegotiation on detecting a significant change in resource levels (e.g., on a fault, or when new resources become
available as in the metacomputing environment).

To consider how this framework is applied to the junction detection application, we annotate the source code to make it
tunable. The annotated code goes through a preprocessor to generate the corresponding QoS agent. The QoS agent for this
application represents tunability in terms of two parameters: the sampling granularity and a search distance metric which
determines how regions of interest are constructed in the second step of the algorithm. The choice of different values for
these two parameters controls the execution path. All the execution paths of this application form a task system, a DAG
which is annotated with per-path resource requirements, deadlines, and output qualities.

The QoS agent communicates this task system to the QoS arbitrator, which chooses the execution path that will be exe-
cuted. Note that depending upon system load, different paths may be chosen for junction-detection jobs that arrive at different
times. The QoS agent then configures the application to execute along that path. In this example, application configuration
just requires setting values for the sampling granularity and search distance parameters.

For a description of experiments demonstrating the enhanced performance enabled by tunability, see [8].

5 Computing Communities: Metacomputing for General Computations

So far, in this report, we have addressed metacomputing for parallel computations. Operating systems such as Amoeba 27,
Plan-9 [24], Clouds [10] and to an extent Mach [1] had targeted the use of distributed systems for seamless general purpose
computing. However, the rise of commodity operating systems and the need for application binary compatibility have made
such approaches less attractive, necessitating instead that general computations also be supported on metacomputing envi-
ronments. To enable the latter, we have designed and will implement the Computing Community (CC) framework.

A Computing Community (CC) is a collection of machines (with dynamic membership) that form a single, dynamically
changing, virtual multiprocessor system. It has global resource management, dynamic (automatic) reconfigurability, and the
ability to run binaries of all applications designed for a base operating system. The physical network disappears from the
view of the computations that run on the CC.

The CC brings flexibility of well-designed, distributed computing environments to the world of non-distributed applications-
including legacy applications-without the need for distributed programming, new APIs, RPCs, object-brokerage, or similar
mechanisms.
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Figure 16. Virtualization of a process.

5.1 Realizinga CC

We have taken initial steps towards building a CC on top of the Windows NT operating system, with the initial software
architecture shown in Figure 14. The CC comprises three synergistic components: (1) Virtual Operating System (2) Global
Resource Manager (3) Application Adaptation System.

The Virtual Operating System (VOS) is a layer of software that non-intrusively operates between the applications and the
standard operating system. The VOS presents the standard Windows NT API to the application, but can execute the same API
calls differently, thereby extending the OS’s power. The VOS essentially decouples the virtual entities required for executing
a computation from their mappings to physical resources in the CC.

The Global Resource Manager manages all CC resources, dynamically discovering the availability of new resources,
integrating them into the CC, and making them available for use by CC computations. It handles resource requests from
other components of the system and satisfies them as per scheduling requirements.

The Application Adaptation System enables the computations to take full advantage of CC resources and provides dynamic
reconfiguration capabilities. Adaptation techniques allow computations to become aware of and gracefully adapt themselves
to changes in CC resource characteristics.

Figure 15 shows a conceptual view of a CC. It takes a set of operating systems, and a set of resources, and via a layer
of middleware converts it into an integrated community. CCs can expand and contract dynamically, and the computations
are completely mobile within CCs. In short, using the CC framework, the computation transparently acquires the benefit of
operating in a distributed environment.

5.2 The Virtualization Concept

Under a standard OS, a process runs in a logical address space, is bound to a machine, and interacts with the OS local to
this machine. In fact, the processes (and their threads) are virtualizations of the real CPUs. However, such virtualization is
low-level and limited in scope.

In the CC, virtualization is defined at a much higher level, and all physical resources (CPU, memory, disks, and networks)
as well as the OSs on to all the machines are aggregated into a single, unified (distributed) virtual resource space.
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A process in the CC is enveloped in a virtual shell (Figure 16), which makes the process feel that it is running on a standard
0S. However, the shell creates a virtual world made of the aggregate of the physical worlds in the CC.

Consider a user U who starts an application A (and its GUI) on some machine M;. Soon, U abruptly moves to another
machine M,. Now U can instruct the CC to connect the virtual screen, virtual keyboard, and the virtual mouse of A to the
physical resources of M». The CC complies and U continues working on Mz, as if A executed there. Later the CC might
decide it preferable to run the application on M. The scheduler then transparently moves A to M» prescrving process statc
and open files and network connections.

The above simple scenario shows a particular aspect of the power of virtualization. In general:

e The users can move their virtual home machines” at will, even for applications that are currently executing. This is
the ultimate mobile computing scenario.

e A critical service running on machine M; can be moved to machine M, if M) has to be relinquished.
¢ Schedulers can control the complete set of resources.

e The provision of multiple physical resources for a single virtual resource delivers important new capabilities ranging
from duplicating application displays on multiple screens to replicating processes for fault tolerance.

The CC functionality relies upon three key mechanisms: API interception, proxies, and translations between physical
and logical handles. API interception allows the API calls from an application to the operating system to be intercepted
and the behavior of the API call to be modified. After intercepting a call, the virtual operating system (VOS) does one of
the following operations. (1) Passes the call on to the local Windows NT operating system. (2) Passes the call to a remote
Windows NT operating system. (3) Executes the call inside the VOS. (4) Executes some VOS code and then passes the call
to a local or remote Windows NT system.

In order to reallocate processes to machines, a general form of process migration is necessary. To move a process from one
location to another, just moving the state is not enough, all connections and handles have to be moved. This can be achieved
by having proxies that emulate the connections of the process after the process has moved. For example, if a process P
moving from M; to M, has an open networking connection to M3, a proxy is created on M, which keeps the original
connection to M3 open, and then forwards messages between P and M3, after P has moved.

Equally essential to successful virtualization of resources for migrating processes is the use of virtual handles. For example
when a process opens a file on top of a VOS, the VOS intercepts this call and stores the returned physical handle but returns
to the process a handle, which we refer to as virtual. The virtual handle can be used by the process, regardless of migrations,
to access that file, due to the transparent translation service provided by the VOS. The virtual handles are used to virtualize
I/O connections, sub-processes, threads, files, network sockets, etc.

6. Concluding Remarks

The project started by developing techniques for enabling the construction of reliable virtual machines on unpredictable
metacomputing distributed platforms. The techniques were simple yet powerful. In order to test their effectiveness, subse-
quently, several systems were built and within their context extensive experiments were conducted. The experiments showed
that for significant classes of computations, the techniques provide a more effective computing environment than what existed
before, with enhanced support for QoS requirements.
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